Search This Blog

Monday, March 7, 2011

Geometry using Matlab

Following are few of the Matlab interpreter commands to understand the geometries of some selected functions. These help me understand few of the complex convex optimization problems.

S.No.
Topic
Command
Description
Output
1
Norms
norm([3,4],1)
7
7


norm([3,4],inf)
4
4


norm([3,4],2) = norm([3,4])
5
5
2
2D plots
x=[-10:1:10];
plot(x, x.^2);

y = x^2




x=[-10:1:10];
plot(x, 3.^x);

y = 3^x




x=[-10:1:10];
plot(x, x.^3);

y = x^3


3
3D plots
t=[0:pi/30:6*pi];
x=t.*cos(t);
y=t.*sin(t);
z=t;
plot3(x,y,z);

grid on
x=t x cos(t)
y=t x sin(t)
z=t



[x,y]=meshgrid(-2:1:2,-2:1:2);
surf(x,y,x.^2-y.^2)
z =x2y2




[x,y]=meshgrid(-2:1:2,-2:1:2);
surf(x,y,x.^2+y.^2)
z =x2+y2




[x,y]=meshgrid(-2:0.1:2,-2:0.1:2);
surf(x,y,x.^2-y.^2)
z =x2y2




[x,y]=meshgrid(-2:0.1:2,-2:0.1:2);
surf(x,y,x.^2+y.^2)
z =x2+y2




[x,y]=meshgrid(-2:0.1:2,-2:0.1:2);
surfc(x,y,x.^2+y.^2)
z =x2+y2

4
Comparing graphs
[x,y]=meshgrid(-1:.1:1,-1:.1:1);
subplot(1,2,1)
surf(x,y,x.^2+y.^2)
axis square

subplot(1,2,2)
contourf(x,y,x.^2+y.^2)
axis square
z =x2+y2



[x,y]=meshgrid(-1:.1:1,-1:.1:1);
subplot(1,2,1)
surf(x,y,sqrt(x.^2+y.^2) )
axis square

subplot(1,2,2)
contourf(x,y, sqrt(x.^2+y.^2) )
axis square




[x,y]=meshgrid(-1:.1:1,-1:.1:1);
subplot(1,2,1)
surf(x,y,nthroot(x.^4+y.^4, 4))
axis square

subplot(1,2,2)
contourf(x,y,nthroot(x.^4+y.^4, 4))











References:

No comments:

Post a Comment